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Abstract. The phase diagram of the two-dimensional biaxially next-nearest-neighbour k ing  
( B N N N I )  model is obtained using the real-space renormalisation group method with the 
mean-field approximation. The transitions between disordered and commensurate phases 
are observed to be single transitions for the ferromagnetic phase at intermediate and high 
temperatures and for the antiphase structure at high temperatures. However, within the 
approximation, successive transitions are observed between the antiphase structure and 
disordered phase at intermediate and low temperatures. 

1. Introduction 

The early studies of the two-dimensional Ising model with competing ferromagnetic 
and antiferromagnetic interactions created considerable interest in the transitions 
between commensurate and incommensurate phases. Hornreich et al (1979) studied 
the model with competing interactions for uniaxial (known as the ANNNI model) and 
biaxial cases using the renormalisation group method with the Migdal-Kadanoff 
bond-moving as well as Monte Carlo techniques. The phase diagrams of these models 
display two distinct commensurate low-temperature phases, the ferromagnetic and 
antiphase structures. In addition, possibly, an incommensurate phase exists at inter- 
mediate temperatures. Indeed, in the uniaxial case, an incommensurate phase is 
believed to be present between the disordered and antiphase states (Selke 1981). In 
the biaxial case, Hornreich et a1 (1979) excluded the existence of such an incommensur- 
ate phase above the ferromagnetic phase. Selke and Fisher (1980) gave some evidence 
for an incommensurate phase above the antiphase structure, bounded to the disordered 
phase possibly by a Kosterlitz-Thouless-type transition. However, Landau and Binder 
(1985) argued in favour of a direct transition of first order from the antiphase to the 
disordered phase without any intermediate structure, based on a Monte Carlo study 
emphasising finite-size effects. Recently, Oitmaa and Velgakis (1987b) studied the 
two-dimensional Ising model with competing interactions along the two axial directions 
by series analysis. They saw an indication of a Kosterlitz-Thouless transition between 
the disordered and antiphase states. They concluded that the absence of a first-order 
transition supports the existence of two separate transitions, but it is not evident. 
Oitmaa et a1 (1987) reported an Ising transition in the ferromagnetic region by using 
finite lattice methods. In the antiphase region, they found distinctive structure in finite 
lattice estimators at two different temperatures, but they decided that the nature of the 
transition is not clear. They called the model the biaxially next-nearest-neighbour 
Ising ( B N N N I )  model. In the latest work by Oitmaa and Velgakis (1987a), the same 
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model has been studied using Monte Carlo methods. They have seen evidence for the 
existence of modulated structures near the transitions, but the form of the phase 
diagram remains unclear. 

In the present work, the phase diagram of the B N N N I  model is obtained by using 
the real-space renormalisation group method with the mean-field approximation. The 
transition between disordered and ferromagnetic phases is observed to be a single 
transition at intermediate and high temperatures. Along the boundary between dis- 
ordered and antiphase states, there is a single transition at high temperatures and 
successive transitions occur at intermediate and low temperatures. 

The model and the method are described in 0 2 and the procedure is explained in 
0 3. Section 4 includes results and discussions. 

2. The model and method 

The Hamiltonian, H, of a B N N N I  model (Oitmaa et a1 1987) can be described by the 
expression 

where the first summation is over all nearest-neighbour pairs and the second summation 
is over all axially next-nearest-neighbour pairs of the Ising spins Si ( S ,  = F 1). K" 
and K"N are the nearest- and axially next-nearest-neighbour couplings respectively 
( K  = J/ kT, J is the magnetic interaction between neighbouring spins, k is the 
Boltzmann constant, T is the temperature). The model has one disordered (paramag- 
netic) and three ordered (ferromagnetic, antiferromagnetic and antiphase) states. 

In the present study, the phase diagram of the BNNNI model is obtained using the 
renormalisation group method (Wilson and Kogut 1974). After the selection of an 
appropriate cell (which preserves lattice symmetry), the original system is transformed 
into a new system by a scale change so that a cell in the original lattice corresponds 
to a new spin in the renormalised lattice. The renormalisation group transformations 
result in a recursion relation between successive renormalised coupling constants. 

A mean-field approximation (Kinzel 1979) is used to obtain the recursion relations. 
In this approximation, the Hamiltonian of the system is written in the form 

H 
Hoi+ V 

I 

where 

and 

Here Ho, is an unperturbed Hamiltonian containing the spin products of the cell spins 
(i.e. the interactions within the cell) and Vis the perturbation containing the interactions 
between different cells. (The indices i, j are cell indices and U, p are spin indices.) 
The spin products S,,S,, can be written as 

Sivsjp  = ( S t v  -(siJ)(s,fi - (S , , ) )  + S i v ( s j p ) + ( s i v ) s j ~  - ( S z v ) ( S j p )  ( 5 )  
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where (S i")  
is assumed 
neglected. 

denotes the average or mean-field value of the spin s i v .  If the mean value 
to be equal to the value of the spin, the first term in equation (5) can be 
Using equation (5), the mean-field value VMF can be written as 

where mi, mJ are the average values of the spins SI, S, respectively and the summations 
are over all cell interactions. 

The free energy of the system can be calculated using the partition function, which 
is 

2 = exp( - H {  S}/ k T )  (8) 
1s) 

where the summation is over all possible spin states. After the first renormalisation 
group transformation, the number of spins N in the original system is reduced by a 
factor b, where J b  is the scale change of the transformation. The number of spins N '  
in the renormalised lattice is given by 

N ' =  N / b .  (9) 

Z = exp[-H'{S'}/ kT+ ( N / b ) K b ]  (10) 

The partition function of the renormalised system can be described by the expression 

{ S ' )  

where Kb is the constant appearing after the first renormalisation. After n transforma- 
tions, the partition function will be in the form 

2 = exp[-H""'(S''"'}/kT+(N/b")K~]. 
i s  1 

(11) 

If n is sufficiently large, the first exponential term will be small compared with the 
second term and can be ignored. Then Z will have the form 

exp[( N /  b")Kb'"']. (12) 

(13) 

(14) 

z = 2N/bn 

The free energy, f, per spin can be calculated from equation (12) using the relation 

- f / k T  = (1/N) In Z 

- f/ kT = (In 2 + Kb("')/  b ". 
and is given as 

3. The procedure 

Computations are carried out for a single cell on a square lattice. The form of the 
selected cell is given in figure 1. The coupling constants K" and K"N are given 
initial values and the system is renormalised into a new system in which five spins of 
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I 
' I  

Figure 1. The form of the selected cell for two different sublattices. 

the cell correspond to a new spin (b  = 5). The state of the new spin is determined by 
the majority rule. Depending on the values of initial couplings, renormalisation group 
trajectories end either at the high-temperature fixed point in the disordered phase or 
at a low-temperature fixed point in one of the ordered phases. Figure 2 shows one 
possible ground state for the antiphase state. 

The Hamiltonian contains the average values of the spins included in the interactions 
between cells. The average value of the spins can be evaluated for the three ground 
states using the relation 

Here 1 is used to label the ordered ground states of the system and j is used to label 
the spins having different symmetry in the lattice. HI{ S} is the approximate Hamiltonian 
with the mean-field term for the lth ground state (which itself is a function of mil). 
Starting with an initial value (e.g. m,, = 1) the average value of the spin can be obtained 
by successive substitutions of m,/ into the expression given in equation (15). The 
iteration is stopped when the difference of the two last iterations is small compared 

Figure 2. One possible ground state for the antiphase state (called the checkerboard or 
chessboard state). 
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with the value of mj,. Once the mil are determined, the values of H' for the three 
ground-state configurations can be determined. 

The renormalised Hamiltonian can be written as 

where K h N  and K h" are the renormalised nearest- and next-nearest-neighbour 
coupling constants respectively. Kb, Ki\lN and Kh" are three unknowns which can 
be found from the three equations resulting from equation (16). The constant Kb is 
used to calculate the free energy as explained in § 2. The RG trajectories are obtained 
using the values of K hN and K h N N  after each RG transformation for different initial 
couplings. The resulting phase diagram is shown in figure 3. For convenience, 1/KNu 

free energy (through the variation of Kb) is studied carefully to confirm the positions 
of all phase boundaries. 

(i.e. kT/J") iS plotted as a function Of -K"N/K" (i.e. -J"N/J"). Variation O f  

I I 
0 5  1 0  1 5  20 

- KNN N /KN N 

Figure 3. The phase diagram of the B N N N I  model as a result of RG trajectories ( D =  
disordered phase, F = ferromagnetic phase, AP = antiphase state). 

4. Results and discussion 

The phase diagram of the B N N N I  model is obtained by using the RG method with the 
mean-field approximation. When the nearest-neighbour coupling is zero (i.e. K" = 0) 
this model reduces to an Ising model with a critical coupling KZNN = 0.43. For zero 
next-nearest-neighbour coupling (i.e. K"N = 0), K G ,  = 0.32 is the critical coupling 
in the ferromagnetic region. The exact critical value for the two-dimensional Ising 
model is K C  = 0.4407.. . . The large discrepancy between KZN and K C  may be due 
to the use of the mean-field approximation for the perturbation Hamiltonian V. 
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As a result of RG iterations, the transition between ferromagnetic and disordered 
phases is observed to be a single transition. But the transition between the disordered 
and antiphase states show different characteristics in two different ranges of K,, 
values. Calculations with various numbers of RG transformations show that, for the 
values of KSN < 0.32, there is always a single transition between the two phases. For 
larger values, disordered and antiphase states appear successively for a range of KNNN 
values at fixed KNN. (Actually, because of numerical difficulties, we have not been 
able to see these successive phases in the region 0.32 G KNN < 0.38. However, our data 
suggest that this region extends down to KNN = 0.32.) At low temperatures, successive 
(ferromagnetic-disordered phiise) transitions are observed along the boundary between 
the ferromagnetic and disordered phases. 

It should be mentioned that the phase structure with successive transitions (corre- 
sponding to the phases associated with two fixed points) cannot be obtained through 
the standard renormalisation group trajectory analysis. In this computation, the poss- 
ible existence of a different type of order in the system (whose ground state is not 
conserved by our RG transformation) seems to yield a chaotic structure in the renormali- 
sation group trajectories that start from points corresponding to this type of order. 
The region including successive transitions supports the existence of an incommensur- 
ate phase between the disordered phase and antiphase state. It is strongly evident that 
there is a single transition between these phases for the values of K,, < 0.38 and that 
there exists another phase between these phases for larger values of KNN. (This 
suggests the existence of a corresponding Lifshitz point at KNN = 0.38 F 0.07 and 
KNNN = -0.42r0.02, the point L in figure 3.) To our knowledge, there is no other 
study which indicates the presence of a phase corresponding to the successive ferromag- 
netic-disordered phase transitions that we see at low temperatures. 

1 0  2 0  3 0  4 0  

- KNNN/KNN 

Figure 4. The phase diagram of the A N N N I  model as a result of RG trajectories. ( D =  
disordered phase, F = ferromagnetic phase, AP = antiphase state.) The full curves represent 
king-like transitions; the broken curve marks the boundary of the successive transition 
region. 
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When calculations are repeated for the uniaxial case, the critical coupling for 
K"N = 0 is obtained as K g N  = 0.32, which is exactly the same as that for the B N N N I  

model. For KNN = 0, the model decomposes into uncoupled one-dimensional Ising 
models. One would therefore expect an infinitely large critical magnitude for K"N. 
However, the mean-field approximation results in the finite value KN" = -1.05. 

The phase diagram of the ANNNI model has the same characteristics as those of 
the BNNNI model (figure 4). The appearance of successive transitions at an intermediate 
temperature can be considered as evidence of a Lifshitz point (the point L in figure 
4) at K" = 0.36F0.04 and K"N = -1.07T0.10. The transition points are obtained 
with the same accuracy achieved for the B N N N I  model except at the boundary between 
the successive transition region and antiphase state. It was not possible to obtain this 
boundary accurately in the uniaxial case due to computational difficulties. Some of 
the RG trajectories which start from the successive transition region pass through points 
where K" < 0. This may be the indication of floating phases which are not observed 
for the BNNNI model. The successive transitions appearing at low temperatures along 
the ferromagnetic-disordered phase boundary of the BNNNI  model are not observed 
in the uniaxial case. 

This method is not expected to give very accurate results in calculating numerical 
values (because of the mean-field approximation). However, the general features of 
the resulting phase diagrams are expected to be correct. 
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